Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834106

RESUMO

The doubled haploid (DH) technology is employed worldwide in various crop-breeding programs, especially maize. Still, restoring tassel fertility is measured as one of the major restrictive factors in producing DH lines. Colchicine, nitrous oxide, oryzalin, and amiprophosmethyl are common chromosome-doubling agents that aid in developing viable diploids (2n) from sterile haploids (n). Although colchicine is the most widely used polyploidy-inducing agent, it is highly toxic to mammals and plants. Therefore, there is a dire need to explore natural, non-toxic, or low-toxic cheaper and accessible substitutes with a higher survival and fertility rate. To the best of our knowledge, the advanced usage of human anticancer drugs "Paclitaxel (PTX)" and "Caffeine-Taurine (CAF-T)" for in vivo maize haploids doubling is being disclosed for the first time. These two antimitotic and antimicrotubular agents (PTX and CAF-T) were assessed under various treatment conditions compared to colchicine. As a result, the maximum actual doubling rates (ADR) for PTX versus colchicine in maize haploid seedlings were 42.1% (400 M, 16 h treatment) versus 31.9% (0.5 mM, 24 h treatment), respectively. In addition, the ADR in maize haploid seeds were CAF-T 20.0% (caffeine 2 g/L + taurine 12 g/L, 16 h), PTX 19.9% (100 µM, 24 h treatment), and colchicine 26.0% (2.0 mM, 8 h treatment). Moreover, the morphological and physiological by-effects in haploid plants by PTX were significantly lower than colchicine. Hence, PTX and CAF-T are better alternatives than the widely used traditional colchicine to improve chromosome-doubling in maize crop.


Assuntos
Cafeína , Zea mays , Humanos , Haploidia , Zea mays/genética , Cafeína/farmacologia , Colchicina/farmacologia , Paclitaxel/farmacologia , Melhoramento Vegetal , Cromossomos de Plantas/genética
2.
Theor Appl Genet ; 136(6): 134, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217699

RESUMO

KEY MESSAGE: Two loci inhibiting Fhb1 resistance to Fusarium head blight were identified through genome-wide association mapping and validated in biparental populations. Fhb1 confers Fusarium head blight (FHB) resistance by limiting fungal spread within spikes in wheat (type II resistance). However, not all lines with Fhb1 display the expected resistance. To identify genetic factors regulating Fhb1 effect, a genome-wide association study for type II resistance was first performed with 72 Fhb1-carrying lines using the Illumina 90 K iSelect SNP chip. Of 84 significant marker-trait associations detected, more than half were repeatedly detected in at least two environments, with the SNPs distributed in one region on chromosome 5B and one on chromosome 6A. This result was validated in a collection of 111 lines with Fhb1 and 301 lines without Fhb1. We found that these two loci caused significant resistance variations solely among lines with Fhb1 by compromising the resistance. In1, the inhibitory gene on chromosome 5B, was in close linkage with Xwgrb3860 in a recombinant inbred line population derived from Nanda2419 × Wangshuibai and a double haploid (DH) population derived from R-43 (Fhb1 near isogenic line) × Biansui7 (with Fhb1 and In1); and In2, the inhibitory gene on chromosome 6A, was mapped to the Xwgrb4113-Xwgrb4034 interval using a DH population derived from R-43 × PH8901 (with Fhb1 and In2). In1 and In2 are present in all wheat-growing areas worldwide. Their frequencies in China's modern cultivars are high but have significantly decreased in comparison with landraces. These findings are of great significance for FHB resistance breeding using Fhb1.


Assuntos
Fusarium , Triticum , Triticum/genética , Triticum/microbiologia , Fusarium/fisiologia , Genótipo , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas
3.
Theor Appl Genet ; 136(5): 110, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039971

RESUMO

KEY MESSAGE: KLW1 was localized to a 0.6 cM interval near the centromere of chromosome 4B and found to be dominant in conditioning longer kernels and higher kernel weight. Kernel weight is a major wheat yield component and affected by kernel dimensions, filling process and kernel density. Because of this complexity, the mechanism underlying kernel weight is still far from clear. Qtgw.nau-4B or KLW1 was a major kernel weight QTL identified in the Nanda2419 × Wangshuibai population. We showed that introduction of the Nanda2419 allele into elite cultivar Wenmai6 resulted in longer kernels as well as higher kernel weight, without affecting other traits such as spike number per plant, plant height, spike length, spikelet number per spike, and kernel number per spike. KLW1 was dominant in conditioning higher kernel weight and functioned mainly through affecting kernel length. Using F2 plants derived from KLW1 NIL, a high-density genetic map covering the QTL was constructed. KLW1 was consequently confined to the 0.6 cM Xwgrc4219-Xwgrc4067 interval by evaluating the recombinant lines in three field trials. KLW1 is complementary to KT1, the QTL on chromosome 5A of Nanda2419 for thicker and heavier kernels, in producing larger kernels with higher commercial value, augmenting its usefulness in wheat breeding.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico/métodos , Triticum/genética , Melhoramento Vegetal , Cromossomos de Plantas
4.
Plant Commun ; 4(4): 100556, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36739481

RESUMO

The centromere is the region of a chromosome that directs its separation and plays an important role in cell division and reproduction of organisms. Elucidating the dynamics of centromeres is an alternative strategy for exploring the evolution of wheat. Here, we comprehensively analyzed centromeres from the de novo-assembled common wheat cultivar Aikang58 (AK58), Chinese Spring (CS), and all sequenced diploid and tetraploid ancestors by chromatin immunoprecipitation sequencing, whole-genome bisulfite sequencing, RNA sequencing, assay for transposase-accessible chromatin using sequencing, and comparative genomics. We found that centromere-associated sequences were concentrated during tetraploidization and hexaploidization. Centromeric repeats of wheat (CRWs) have undergone expansion during wheat evolution, with strong interweaving between the A and B subgenomes post tetraploidization. We found that CENH3 prefers to bind with younger CRWs, as directly supported by immunocolocalization on two chromosomes (1A and 2A) of wild emmer wheat with dicentromeric regions, only one of which bound with CENH3. In a comparison of AK58 with CS, obvious centromere repositioning was detected on chromosomes 1B, 3D, and 4D. The active centromeres showed a unique combination of lower CG but higher CHH and CHG methylation levels. We also found that centromeric chromatin was more open than pericentromeric chromatin, with higher levels of gene expression but lower gene density. Frequent introgression between tetraploid and hexaploid wheat also had a strong influence on centromere position on the same chromosome. This study also showed that active wheat centromeres were genetically and epigenetically determined.


Assuntos
Tetraploidia , Triticum , Triticum/genética , Centrômero/genética , Cromatina , Sequência de Bases
5.
Sci China Life Sci ; 65(9): 1718-1775, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36018491

RESUMO

Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.


Assuntos
Melhoramento Vegetal , Triticum , Genoma de Planta/genética , Genômica , Fenótipo , Locos de Características Quantitativas/genética , Triticum/genética
6.
Theor Appl Genet ; 135(3): 1101-1111, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35083509

RESUMO

KEY MESSAGE: KT1 was validated as a novel thickness QTL with major effects on wheat kernel dimensions and weight and fine mapped to a 0.04 cM interval near the chromosome-5A centromere. Kernel size, the principal grain weight determining factor of wheat and a target trait for both domestication and artificial breeding, is mainly defined by kernel length (KL), kernel width (KW) and kernel thickness (KT), of which KW and KT have been shown to be positively related to grain weight (GW). Qkt.nau-5A, a major QTL for KT, was validated using the QTL near-isogenic lines (NILs) in three genetic backgrounds. Genetic analysis using two F2 populations derived from the NILs showed that Qkt.nau-5A was dominant for thicker kernel and inherited like a single gene and therefore was designated as Kernel Thickness 1 (KT1). With 77 recombinant lines identified from a total of 19,160 F2 plants from the two NIL-derived F2 populations, KT1 was mapped to the 0.04 cM Xwgrb1356-Xwgrb1619 interval, which was near the centromere and displayed strong recombination suppression. The KT1 interval showed positive correlation with KW and GW and negative correlation with KL and therefore could be used in breeding for cultivars with round-shaped kernels that are beneficial to higher flour yield. KT1 candidate identification could be achieved through combination of sequence variation analysis with expression profiling of the annotated genes in the interval.


Assuntos
Cromossomos de Plantas , Triticum , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Grão Comestível/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Sementes/genética , Triticum/genética
7.
Front Plant Sci ; 12: 694023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335661

RESUMO

Wheat production is increasingly threatened by the fungal disease, Fusarium head blight (FHB), caused by Fusarium spp. The introduction of resistant varieties is considered to be an effective measure for containment of this disease. Mapping of FHB-resistance quantitative trait locus (QTL) has promoted marker-assisted breeding for FHB resistance, which has been difficult through traditional breeding due to paucity of resistance genes and quantitative nature of the resistance. The lab of Ma previously cloned Fhb1, which inhibits FHB spread within spikes, and fine mapped Fhb4 and Fhb5, which condition resistance to initial infection of Fusarium spp., from FHB-resistant indigenous line Wangshuibai (WSB). In this study, these three QTLs were simultaneously introduced into five modern Chinese wheat cultivars or lines with different ecological adaptations through marker-assisted backcross in early generations. A total of 14 introgression lines were obtained. All these lines showed significantly improved resistance to the fungal infection and disease spread in 2-year field trials after artificial inoculation. In comparison with the respective recipient lines, the Fhb1, Fhb4, and Fhb5 pyramiding could reduce the disease severity by 95% and did not systematically affect plant height, productive tiller number, kernel number per spike, thousand grain weight, flowering time, and unit yield (without Fusarium inoculation). These results indicated the great value of FHB-resistance QTLs Fhb1, Fhb4, and Fhb5 derived from WSB, and the feasibility and effectiveness of early generation selection for FHB resistance solely based on linked molecular markers.

8.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206810

RESUMO

Recently, crop breeders have widely adopted a new biotechnology-based process, termed Seed Production Technology (SPT), to produce hybrid varieties. The SPT does not produce nuclear male-sterile lines, and instead utilizes transgenic SPT maintainer lines to pollinate male-sterile plants for propagation of nuclear-recessive male-sterile lines. A late-stage pollen-specific promoter is an essential component of the pollen-inactivating cassette used by the SPT maintainers. While a number of plant pollen-specific promoters have been reported so far, their usefulness in SPT has remained limited. To increase the repertoire of pollen-specific promoters for the maize community, we conducted a comprehensive comparative analysis of transcriptome profiles of mature pollen and mature anthers against other tissue types. We found that maize pollen has much less expressed genes (>1 FPKM) than other tissue types, but the pollen grain has a large set of distinct genes, called pollen-specific genes, which are exclusively or much higher (100 folds) expressed in pollen than other tissue types. Utilizing transcript abundance and correlation coefficient analysis, 1215 mature pollen-specific (MPS) genes and 1009 mature anther-specific (MAS) genes were identified in B73 transcriptome. These two gene sets had similar GO term and KEGG pathway enrichment patterns, indicating that their members share similar functions in the maize reproductive process. Of the genes, 623 were shared between the two sets, called mature anther- and pollen-specific (MAPS) genes, which represent the late-stage pollen-specific genes of the maize genome. Functional annotation analysis of MAPS showed that 447 MAPS genes (71.7% of MAPS) belonged to genes encoding pollen allergen protein. Their 2-kb promoters were analyzed for cis-element enrichment and six well-known pollen-specific cis-elements (AGAAA, TCCACCA, TGTGGTT, [TA]AAAG, AAATGA, and TTTCT) were found highly enriched in the promoters of MAPS. Interestingly, JA-responsive cis-element GCC box (GCCGCC) and ABA-responsive cis-element-coupling element1 (ABRE-CE1, CCACC) were also found enriched in the MAPS promoters, indicating that JA and ABA signaling likely regulate pollen-specific MAPS expression. This study describes a robust and straightforward pipeline to discover pollen-specific promotes from publicly available data while providing maize breeders and the maize industry a number of late-stage (mature) pollen-specific promoters for use in SPT for hybrid breeding and seed production.


Assuntos
Perfilação da Expressão Gênica/métodos , Melhoramento Vegetal/métodos , Pólen/genética , Transcriptoma , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , Pólen/metabolismo , Regiões Promotoras Genéticas , Sementes/genética , Sementes/metabolismo , Zea mays/metabolismo
9.
Theor Appl Genet ; 134(9): 3037-3049, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34110431

RESUMO

KEY MESSAGE: Stably expressed type I and type II resistance QTL were identified using two Yangmai 158-derived RIL populations, and plant-height and flowering-time QTL intervals detected did not contribute to the FHB resistance variations. Yangmai 158 (Y158) is an elite wheat cultivar widely grown in China with stable Fusarium head blight (FHB) resistance. To enrich the genetic basis underlying FHB resistance, QTL mapping was conducted using two recombinant inbred line (RIL) populations derived from crosses of Y158 with susceptible lines Annong 8455 and Veery. Survey with makers linked to Fhb1, Fhb2, Fhb4 and Fhb5 in resistance cultivar Wangshuibai indicated that both Y158 and the susceptible lines do not contain these QTL. The RIL populations were surveyed with 65 PCR markers and 55 K chip, which generated 23,159 valid marker data, to produce genetic maps for whole genome scanning of quantitative trait loci (QTL). A total of six QTL, all with the Y158 alleles for better resistance and including one stably expressed QTL for type I resistance (Qfhi.nau-2D) and one stably expressed QTL for type II resistance (Qfhs.nau-2A), were identified. Moreover, taking advantage of the great genetic variations in plant height and flowering time, QTL conditioning these two traits were determined. Of six plant-height QTL and three flowering-time QTL intervals detected, none were associated with FHB resistance. The FHB resistance QTL in Y158 were shown to be useful alternatives in FHB resistance breeding programs. The SNP markers flanking Qfhs.nau-2A and Qfhi.nau-2D have been converted to breeder-friendly PCR-based markers to facilitate their applications.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Fusarium/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Triticum/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
10.
Theor Appl Genet ; 134(9): 2813-2821, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34023915

RESUMO

KEY MESSAGE: Apart from confinement of Ne1 to a 4.45 Mb genomic segment, markers closely linked to Ne2 were identified and incomplete dominance of both genes in conditioning necrosis severity was shown. Hybrid necrosis in plants is characterized by premature death of leaves or plants in F1 hybrids. Interaction of two complementary dominant genes Ne1 and Ne2 in wheat (Triticum aestivum L.) is known to cause hybrid necrosis. However, the mechanism underlying this necrosis is still elusive. To obtain markers closely-linked to these two genes, Ne1-carrying cultivar Zheng891 was crossed with Ne2-carrying cultivar Pan555. Using BC1F1 plants derived from crosses of the F1 plants with the two parental lines, Ne1 and Ne2 were mapped to a 2.2 cM interval and a 2.3 cM interval with newly developed markers, respectively. Ne1 was further delimited to a 0.19 cM interval using 2015 Ne2-carrying F2 plants. Xwgrc3146, Xwgrc3147 and Xwgrc3150, three of the four markers co-segregating with Ne1, were all Zheng891-dominant, suggesting that, compared with Pan555, Ne1 is located in a region with substantial sequence diversity. The Ne1 interval is syntenic to chromosomes 5H, 4, 9 and 2 of barley, Brachypodium distachyon, rice and sorghum, respectively, and corresponds to a 4.45 Mb Chinese Spring sequence. Variations in necrosis severity of the F2 plants differing in Ne1 and Ne2 genotypes implied that these two genes are incompletely dominant in determining the timing and severity of necrosis.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Necrose , Fenótipo , Proteínas de Plantas/metabolismo , Triticum/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento
11.
Nat Commun ; 12(1): 2303, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863881

RESUMO

Vernalization genes underlying dramatic differences in flowering time between spring wheat and winter wheat have been studied extensively, but little is known about genes that regulate subtler differences in flowering time among winter wheat cultivars, which account for approximately 75% of wheat grown worldwide. Here, we identify a gene encoding an O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) that differentiates heading date between winter wheat cultivars Duster and Billings. We clone this TaOGT1 gene from a quantitative trait locus (QTL) for heading date in a mapping population derived from these two bread wheat cultivars and analyzed in various environments. Transgenic complementation analysis shows that constitutive overexpression of TaOGT1b from Billings accelerates the heading of transgenic Duster plants. TaOGT1 is able to transfer an O-GlcNAc group to wheat protein TaGRP2. Our findings establish important roles for TaOGT1 in winter wheat in adaptation to global warming in the future climate scenarios.


Assuntos
Aclimatação/fisiologia , Flores/crescimento & desenvolvimento , N-Acetilglucosaminiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Triticum/fisiologia , N-Acetilglucosaminiltransferases/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Locos de Características Quantitativas/genética , Estações do Ano
12.
Plant Physiol ; 186(1): 483-496, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33576803

RESUMO

Programmed cell death (PCD) and apoptosis have key functions in development and disease resistance in diverse organisms; however, the induction of necrosis remains poorly understood. Here, we identified a semi-dominant mutant allele that causes the necrotic death of the entire seedling (DES) of wheat (Triticum aestivum L.) in the absence of any pathogen or external stimulus. Positional cloning of the lethal allele mDES1 revealed that this premature death via necrosis was caused by a point mutation from Asp to Asn at amino acid 441 in a nucleotide-binding leucine-rich repeat protein containing nucleotide-binding domain and leucine-rich repeats. The overexpression of mDES1 triggered necrosis and PCD in transgenic plants. However, transgenic wheat harboring truncated wild-type DES1 proteins produced through gene editing that exhibited no significant developmental defects. The point mutation in mDES1 did not cause changes in this protein in the oligomeric state, but mDES1 failed to interact with replication protein A leading to abnormal mitotic cell division. DES1 is an ortholog of Sr35, which recognizes a Puccinia graminis f. sp. tritici stem rust disease effector in wheat, but mDES1 gained function as a direct inducer of plant death. These findings shed light on the intersection of necrosis, apoptosis, and autoimmunity in plants.


Assuntos
Doenças das Plantas/genética , Plântula/fisiologia , Triticum/fisiologia , Alelos , Resistência à Doença/genética , Plântula/genética , Triticum/genética
13.
Front Plant Sci ; 11: 596918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324438

RESUMO

This study aimed to prepare the sugar industry for the possible introduction of genetically modified (GM) sugarcane and derived retail sugar products and to address several potential public concerns regarding the characteristics and safety of these products. GM sugarcane lines with integrated Cry1Ab and EPSPS foreign genes were used for GM sugar production. Traditional PCR, real-time fluorescent quantitative PCR (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) were performed in analyzing leaves, stems, and other derived materials during sugar production, such as fibers, clarified juices, filter mud, syrups, molasses, and final GM sugar product. The toxicity of GM sugar was examined with a feeding bioassay using Helicoverpa armigera larvae. PCR and RT-qPCR results showed that the leaves, stems, fibers, juices, syrups, filter mud, molasses, and white granulated sugar from GM sugarcane can be distinguished from those derived from non-GM sugarcane. The RT-qPCR detection method using short amplified product primers was more accurate than the traditional PCR method. Molecular analysis results indicated that trace amounts of DNA residues remain in GM sugar, and thus it can be accurately characterized using molecular analysis methods. ELISA results showed that only the leaves, stems, fibers, and juices sampled from the GM sugarcane differed from those derived from the non-GM sugarcane, indicating that filter mud, syrup, molasses, and white sugar did not contain detectable Cry1Ab and EPSPS proteins. Toxicity analysis showed that the GM sugar was not toxic to the H. armigera larvae. The final results showed that the GM sugar had no active proteins despite containing trace amounts of DNA residues. This finding will help to pave the way for the commercialization of GM sugarcane and production of GM sugar.

14.
Theor Appl Genet ; 133(5): 1541-1568, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31900498

RESUMO

Fusarium head blight (FHB), or scab, for its devastating nature to wheat production and food security, has stimulated worldwide attention. Multidisciplinary efforts have been made to fight against FHB for a long time, but the great progress has been achieved only in the genomics era of the past 20 years, particularly in the areas of resistance gene/QTL discovery, resistance mechanism elucidation and molecular breeding for better resistance. This review includes the following nine main sections, (1) FHB incidence, epidemic and impact, (2) causal Fusarium species, distribution and virulence, (3) types of host resistance to FHB, (4) germplasm exploitation for FHB resistance, (5) genetic control of FHB resistance, (6) fine mapping of Fhb1, Fhb2, Fhb4 and Fhb5, (7) cloning of Fhb1, (8) omics-based gene discovery and resistance mechanism study and (9) breeding for better FHB resistance. The advancements that have been made are outstanding and exciting; however, judged by the complicated nature of resistance to hemi-biotrophic pathogens like Fusarium species and lack of immune germplasm, it is still a long way to go to overcome FHB.


Assuntos
Resistência à Doença/genética , Fusarium/fisiologia , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Triticum/genética , Cromossomos de Plantas , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
15.
Genomics ; 112(2): 1343-1350, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31401233

RESUMO

Lineage-specific genes (LSGs) are a set of genes in a given taxon without significant sequence similarity to genes and intergenic sequences of other taxa and are functional. The tribe Triticeae mainly includes species of different ploidy levels, such as staple food crops wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). This study is aimed at mining and characterizing the Triticeae-specific genes (TSGs) using expressed sequence data of wheat. A total of 3812 TSGs was identified and they were generally characterized by smaller size, fewer exons, shorter open reading frames and lower expression levels. Most TSGs were expressed with tissue preference and many of them were predominantly expressed in reproduction related tissues, especially in young stamen. Nearly one third of the TSGs were stress-responsive and inducible under abiotic and/or biotic stresses. A co-expression-based annotation supported the relevance of some TSGs with reproduction and stress responses, indicating their potential economic importance.


Assuntos
Genes de Plantas , Triticum/genética , Fases de Leitura Aberta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Triticum/classificação , Triticum/metabolismo
16.
Plant Sci ; 285: 141-150, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31203879

RESUMO

Plant tissue brittleness is related to cellular structure and lodging. MED0031 is a mutant identified previously from ethyl methane sulfonate treatment of diploid wheat accession TA2726, showing brittleness in both stem and leaf. In microscopic and histological observations, the mutant was found to have less large vascular bundles per unit area, a thinner sclerenchyma cell wall, and a broader parenchyma, compared with the wild type. The mutated gene, TmBr1, was mapped to a 0.056 cM interval on chromosome 5Am. This gene was cloned using a MapRseq approach that searched the candidate gene through combination of the prior target gene mapping information with SNP calling and discovery of differentially expressed genes from RNA_seq data of the wild type and a BC3F2 bulk showing the mutant phenotype. TmBr1 encodes a COBL protein and a nonsense mutation within the region coding for the conserved COBRA domain caused premature translation termination. Introduction of TmBr1 to Arabidopsis AtCOBL4 mutant rescued the phenotype, demonstrating their functional conservation. Apart from the effect on cellulose content, the TmBr1 mutation might modulate synthesis of noncellulosic polysaccharide pectin as well. Application of the MapRseq approach to isolation of genes present in recombination cold spots and complicated genomes was discussed.


Assuntos
Clonagem Molecular/métodos , Genes de Plantas/genética , Triticum/genética , Parede Celular/metabolismo , Celulose/metabolismo , Mapeamento Cromossômico , Genes de Plantas/fisiologia , Lignina/metabolismo , Microscopia Eletrônica de Varredura , Pectinas/metabolismo , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Triticum/anatomia & histologia , Triticum/fisiologia
17.
Nat Genet ; 51(7): 1106-1112, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31182810

RESUMO

Head or ear blight, mainly caused by Fusarium species, can devastate almost all staple cereal crops (particularly wheat), resulting in great economic loss and imposing health threats on both human beings and livestock1-3. However, achievement in breeding for highly resistant cultivars is still not satisfactory. Here, we isolated the major-effect wheat quantitative trait locus, Qfhs.njau-3B, which confers head blight resistance, and showed that it is the same as the previously designated Fhb1. Fhb1 results from a rare deletion involving the 3' exon of the histidine-rich calcium-binding-protein gene on chromosome 3BS. Both wheat and Arabidopsis transformed with the Fhb1 sequence showed enhanced resistance to Fusarium graminearum spread. The translation products of this gene's homologs among plants are well conserved and might be essential for plant growth and development. Fhb1 could be useful not only for curbing Fusarium head blight in grain crops but also for improving other plants vulnerable to Fusarium species.


Assuntos
Cálcio/metabolismo , Resistência à Doença/genética , Fusarium/fisiologia , Histidina/química , Mutação , Doenças das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Triticum/microbiologia
18.
Theor Appl Genet ; 132(6): 1789-1797, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30810762

RESUMO

KEY MESSAGE: A major QTL QSpl.nau-7D, named HL2, was validated for its effects on head length and kernel number per spike using NIL, and mapped to a 0.2 cM interval using recombinants. Improvement in wheat inflorescence traits such as spike or head length and spikelet number provides an important avenue to increase grain yield potential. In a previous study, QSpl.nau-7D, the major QTL for head length on chromosome 7D, was identified in the recombinant inbred lines derived from Nanda2419 and Wangshuibai. To validate and precisely map this QTL, the Wangshuibai allele was transferred to elite cultivar Yangmai15 through marker-assisted selection. Compared with the recurrent parent, the resultant near-isogenic line (NIL) yielded not only 28% longer spikes on the average but also more spikelets and kernels per spike. Moreover, the NIL had a lower spikelet density and did not show significant kernel weight change. In the F2 population derived from the NIL, QSpl.nau-7D acted like a single semi-dominant gene controlling head length and was therefore designated as Head Length 2 (HL2). With this population, a high-density genetic map was constructed mainly using newly developed markers, and 100 homozygous recombinants including 17 genotypes were obtained. Field experiments showed that the recombinants carrying the 0.2-cM interval flanked by Xwgrb1588 and Xwgrb1902 from Wangshuibai produced longer spikes than those without this Wangshuibai allele. Comparative mapping of this interval revealed a conserved synteny among cereal grasses. HL2 is beneficial to wheat breeding for more kernels per spike at a lower spikelet density, which is a favored morphological trait for Fusarium head blight resistance.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Locos de Características Quantitativas , Sementes/genética , Triticum/genética , Haplótipos , Característica Quantitativa Herdável , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
19.
Planta ; 248(5): 1329, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30187154

RESUMO

Unfortunately, the style of the units was incorrectly published ("cm" instead of "cM") throughout the original article.

20.
Planta ; 248(5): 1319-1328, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30128601

RESUMO

MAIN CONCLUSION: Fine mapping of wheat powdery mildew-resistance gene Pm4e to a 0.19 cM interval with sequence-based markers provides the foundation for map-based cloning and marker-assisted selection with breeder-friendly markers. Powdery mildew caused by Blumeria graminis f. sp. tritici is a wheat foliar disease that poses a serious threat to global wheat production. Pm4 is a resistance gene locus that has played a key role in controlling this disease in wheat production and a few resistance alleles of this locus have been identified. We have previously mapped the Pm4e allele to a 6.7 cM interval on chromosome 2AL. In this study, Pm4e was delimited to a 0.19 cM interval flanked by Xwgrc763 and Xwgrc865, through employment of a larger segregating population, derived from the cross of resistant parent D29 with susceptible parent Yangmai 158 (Y158), and enrichment of the genetic interval with markers developed on Chinese Spring (C.S.) survey sequence. In this interval, Pm4e co-segregated with a few markers, some of which were either D29-dominant or Y158-dominant, implying great sequence variation in the interval between D29 and Y158. Most of these co-segregation markers could not differentiate the Pm4 alleles from each other. Survey of 55 wheat cultivars with four co-dominant markers showed that the Pm4e-co-segregating loci always co-exist. Annotation of the Pm4e interval-corresponding C.S. sequence revealed more than a dozen resistance gene analogs clustered in a 2.4 Mb region, although C.S. is susceptible to the Pm4e-avirulent isolate Bgt2. This study has established the foundation for map-based cloning of Pm4e. Moreover, some of the co-dominant markers developed in this study could help in marker-assisted transfer of Pm4e into elite cultivars.


Assuntos
Ascomicetos/metabolismo , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Ligação Genética/genética , Marcadores Genéticos/genética , Haplótipos/genética , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...